264 research outputs found

    Indentor-escape, delamination and orogenic collapse of the ca. 600-500 Ma East African/Antarctic Orogen in Mozambique and Dronning Maud Land (East Antarctica)

    Get PDF
    The East African/Antarctic Orogen (EAAO) is one of the largest orogenic belts on the planet, resulting from the collision of various parts of East and West- Protogondwana between ca. 600 and 550 Ma. The central and southern parts of the orogen are typified by high-grade rocks, representing the overprinted margins of the various colliding continental blocks. New fieldwork and geochronology in northern Mozambique reveals a protracted polyphase Ediacaran/Cambrian deformation history. New age constraints reveal high-grade metamorphism at 600-550 Ma, overprinting and older basement

    Microscopic Magnetic Properties of (V1x_{1-x}Tix_{x})2_2O3_3 near the Phase Boundary of the Metal-Insulator Transition

    Full text link
    Magnetic susceptibility (chi) and 51^{51}V NMR have been measured in (V1x_{1-x}Tix_{x})2_2O3_3 near the phase boundary of the metal-insulator transition. It is established that the transition from antiferromagnetic insulating (AFI) to antiferromagnetic metallic phases near xc0.05x_{\rm c}\approx 0.05 is not quantum critical but is discontinuous with a jump of the transition temperature. In the AFI phase at 4.2 K, we observed the satellite in the zero-field 51^{51}V NMR spectrum around 181 MHz in addition to the ``host'' resonance around 203 MHz. The satellite is also observable in the paramagnetic metallic phase of the x = 0.055 sample. We associated the satellite with the V sites near Ti which are in the V3+^{3+}-like oxidation state but has different temperature dependence of the NMR shift from that of the host V site. The host d-spin susceptibility for x = 0.055 decreases below \sim60 K but remains finite in the low-temperature limit.Comment: 9 pages, 4 eps figures; corrected the author lis

    Focal Surface Projection: Extending Projector Depth-of-Field Using a Phase-Only Spatial Light Modulator

    Full text link
    We present a focal surface projection to solve the narrow depth-of-field problem in projection mapping applications. We apply a phase-only spatial light modulator to realize nonuniform focusing distances, whereby the projected contents appear focused on a surface with considerable depth variations. The feasibility of the proposed technique was validated through a physical experiment

    Speeded-Up Focus Control of Electrically Tunable Lens by Sparse Optimization

    Get PDF
    Electrically tunable lenses (ETL), also known as liquid lenses, can be focused at various distances by changing the electric signal applied on the lens. ETLs require no mechanical structures, and therefore, provide a more compact and inexpensive focus control than conventional computerized translation stages. They have been exploited in a wide range of imaging and display systems and enabled novel applications for the last several years. However, the optical fluid in the ETL is rippled after the actuation, which physically limits the response time and significantly hampers the applicability range. To alleviate this problem, we apply a sparse optimization framework that optimizes the temporal pattern of the electrical signal input to the ETL. In verification experiments, the proposed method accelerated the convergence of the focal length to the target patterns. In particular, it converged the optical power to the target at twice the speed of the simply determined input signal, and increased the quality of the captured image during multi-focal imaging

    Development of Low-Yield Stress Co–Cr–W–Ni Alloy by Adding 6 Mass Pct Mn for Balloon-Expandable Stents

    Get PDF
    This is the first report presenting the development of a Co–Cr–W–Ni–Mn alloy by adding 6 mass pct Mn to ASTM F90 Co–20Cr–15W–10Ni (CCWN, mass pct) alloy for use as balloon-expandable stents with an excellent balance of mechanical properties and corrosion resistance. The effects of Mn addition on the microstructures as well as the mechanical and corrosion properties were investigated after hot forging, solution treatment, swaging, and static recrystallization. The Mn-added alloy with a grain size of ~ 20 µm (recrystallization condition: 1523 K, 150 seconds) exhibited an ultimate tensile strength of 1131 MPa, 0.2 pct proof stress of 535 MPa, and plastic elongation of 66 pct. Additionally, it exhibited higher ductility and lower yield stress while maintaining high strength compared to the ASTM F90 CCWN alloy. The formation of intersecting stacking faults was suppressed by increasing the stacking fault energy (SFE) with Mn addition, resulting in a lower yield stress. The low-yield stress is effective in suppressing stent recoil. In addition, strain-induced martensitic transformation during plastic deformation was suppressed by increasing the SFE, thereby improving the ductility. The Mn-added alloys also exhibited good corrosion resistance, similar to the ASTM F90 CCWN alloy. Mn-added Co–Cr–W–Ni alloys are suitable for use as balloon-expandable stents.Yanagihara S., Ueki K., Ueda K., et al. Development of Low-Yield Stress Co–Cr–W–Ni Alloy by Adding 6 Mass Pct Mn for Balloon-Expandable Stents. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 52, 9, 4137. https://doi.org/10.1007/s11661-021-06374-7

    Improvement of mechanical properties by microstructural evolution of biomedical Co-Cr-W-Ni alloys with the addition of Mn and Si

    Full text link
    We investigated changes in the microstructure and mechanical properties of biomedical Co-20Cr-15W-10Ni alloys (mass%) containing 8 mass% Mn and 0-3 mass% Si due to hot forging, solution treatment, cold swaging, and static recrystallization. The η-phase (M₆X-M₁₂X type cubic structure, M: metallic elements, X: C and/or N, space group: Fd-3m (227)) and CoWSi type Laves phase (C14 MgZn2 type hexagonal structure, space group: P63/mmc (194)) were confirmed as precipitates in the as-cast and as-forged alloys. To the best of our knowledge, this is the first report that reveals the formation of CoWSi type Laves phase precipitates in Co-Cr-W-Ni-based alloys. The addition of Si promoted the formation of precipitates of both η-phase and CoWSi type Laves phase. The solution-treated 8Mn+(0, 1)Si-added alloys exhibited TWIP-like plastic deformation behavior with an increasing work-hardening rate during the early to middle stages of plastic deformation. This plastic deformation behavior is effective in achieving both the low yield stress and high strength required to develop a high-performance balloon-expandable stent. The 8Mn+2Si-added alloy retained the CoWSi type Laves phase even after solution treatment, such that the ductility decreased but the strength improved. Additions of Mn and Si are effective in improving the ductility and strength of the Co-Cr-W-Ni alloy, respectively.Ueki K., Yanagihara S., Ueda K., et al. Improvement of mechanical properties by microstructural evolution of biomedical Co-Cr-W-Ni alloys with the addition of Mn and Si. Materials Transactions 62, 229 (2021); https://doi.org/10.2320/matertrans.MT-M2020300

    Overcoming the strength-ductility trade-off by the combination of static recrystallization and low-temperature heat-treatment in Co-Cr-W-Ni alloy for stent application

    Get PDF
    A process combining swaging, static recrystallization, and heat treatment at 873 K (low-temperature heat-treatment, LTHT) was developed for achieving both high ultimate strength and high ductility in Co-20Cr-15W-10Ni (mass%, CCWN) alloy for stent application. The alloys swaged to a sectional area reduction rate of 58.3% were annealed at 1373–1473 K for 30–300 s. Under annealing at 1373 K for 300 s, a fine grain structure with an average grain size of ~6 μm formed, while under annealing at 1473 K, a structure with an average grain size of 12 μm formed after 120 s. In the alloys annealed at 1373–1448 K, the formation of η-phase precipitates (M6X-M12X type, M: metallic elements, X: C and/or N) was observed, while no precipitates were observed in the alloys annealed at 1473 K. The improvement in ultimate strength by grain refinement was confirmed. Alloys annealed at 1473 K showed higher ductility compared to those annealed at 1373–1448 K even if the grain size was similar. It is considered that the η-phase precipitates deteriorated the ductility of the annealed alloys. LTHT suppressed the strain-induced martensitic γ-to-ε transformation to improve the ductility of the fine-grained as well as coarse-grained alloys. Thus, regardless of the grain size, it is newly evidenced that LTHT effectively improves ductility in CCWN alloy. By combining high-temperature short-time annealing and LTHT, both the ultimate strength and ductility of Co-20Cr-15W-10Ni (mass%) alloy improved, and it was possible to provide properties suitable for next-generation balloon-expandable stents with Co-20Cr-15W-10Ni (mass%) alloy.Ueki K., Yanagihara S., Ueda K., et al. Overcoming the strength-ductility trade-off by the combination of static recrystallization and low-temperature heat-treatment in Co-Cr-W-Ni alloy for stent application. Materials Science and Engineering A, 766, 138400. https://doi.org/10.1016/j.msea.2019.138400
    corecore